Color

DSC 106: Data Visualization

Jared Wilber
UC San Diego

Announcements

Project 2 Peer Review - Thursday 5/2.
Lab 5 (D3) out, due 5/3.
Project 3 out, due on Friday 5/10.
I will email a group sign-up sheet for Project 3.
Be respectful on Ed - inflammatory messages will be sent to SAGE for Non-Academic misconduct.

Project 2 Peer Review

There is a spreadsheet assigning each students two peers.
You will review Project 2 for the given peers.

Color

Modeling Color Perception

Low-Level
Abstraction
High-Level

Mental Models

Modeling Color Perception

Physical World

Visible Light

Visual System

Opponent
Encoding

Perceptual Models

Mental Models

Appearance Models
"Teal"

Cognitive Models

Visible Light

Light is an electromagnetic wave.
Wavelength (λ) between 370nm 730nm.

Color depends on the spectral distribution function (or spectrum): distribution of "relative luminance" at each wavelength.

Area under the spectrum is intensity: or how bright each wavelength is.

Visible Light

Light is an electromagnetic wave.
Wavelength (λ) between $370 \mathrm{~nm}-730 \mathrm{~nm}$.
Color depends on the spectral distribution function (or spectrum): distribution of "relative luminance" at each wavelength.

Area under the spectrum is intensity: or how bright each wavelength is.

Additive: Perceived color is due to a combination of source lights (e.g., RGB).

Subtractive: Start from a white spotlight, and materials absorb specific λs (e.g., RYB or CMYK).

Modeling Color Perception

Low-Level

Physical World

Visible Light

Visual System

Opponent
Encoding

Perceptual Models

Mental Models

Cognitive Models

Modeling Color Perception

Low-Level

Visual System

Visible
Light

Cone
Response

Opponent
Encoding

Perceptual Models

Mental Models

Appearance Cognitive Models Models

Photoreceptors on retina are responsible for vision: rods - low-light levels, poor spatial acuity, little color vision

Photoreceptors on retina are responsible for vision: rods - low-light levels, poor spatial acuity, little color vision cones - sensitive to different wavelengths = color vision! short, middle, long ~ blue, green, red

The Retina

Firefox and Chrome have built in simulators
\square

ninanc

Photoreceptors on retina are responsible for vision: rods - low-light levels, poor spatial acuity, little colo cones - sensitive to different wavelengths = color short, middle, long ~ blue, green, red

The Retina

Photoreceptors on retina are responsible for vision: rods - low-light levels, poor spatial acuity, little colo cones - sensitive to different wavelengths = color short, middle, long ~ blue, green, red integrate against different input stimuli

Input Stimulus

Cone Response Curves

Product
Integrate

tri-stimulus response - color can be modeled as 3 values.

Photoreceptors on retina are responsible for vision: rods - low-light levels, poor spatial acuity, little colo cones - sensitive to different wavelengths = color long, middle, short ~ red, green, blue integrate against different input stimuli tri-stimulus response - color can be modeled as 3 values.
 metamers - spectra that stimulate the same LMS response are indistinguishable.

Color space standardized in 1931 to mathematically represent tri-stimulus response curves.

Red $=645 \mathrm{~nm}$
Green =
525nm
Blue =
444nm

Wavelength (nm)

Wavelength (nm)
mathematic
transformation
No real lights can the x,
y, z response curves.

CIE XYZ $o l o r ~ s p a c e ~ s t a n d a r d i z e d ~ i n ~ 1931 ~ t o ~ m a t h e m a t i c a l l y ~$ epresent tri-stimulus response curves.

CIE XYZ Color Spaí

Project into a 2D plane to separate colorfulness from brightness.

$$
\begin{aligned}
& x=\frac{X}{X+Y+Z} \\
& y=\frac{Y}{X+Y+Z} \\
& 1=x+y+z
\end{aligned}
$$

CIE Basc Chomanaity Onasam

CIE XYZ Color Spå

$$
\begin{aligned}
& x=\frac{X}{X+Y+Z} \\
& y=\frac{Y}{X+Y+Z} \\
& 1=x+y+z
\end{aligned}
$$

Spectral locus - set of pure colors (i.e., lasers of a single wavelength).
Slowly shifts from $S \rightarrow M$ \rightarrow L.

CIE XYZ Color S Display gamut = portion

 of the color space that can be reproduced by a display.

Modeling Color Perception

Low-Level

Visual System

Visible
Light

Cone
Response

Opponent
Encoding

Perceptual Models

Mental Models

Appearance Cognitive Models Models

Modeling Color Perception

Low-Level
Abstraction
High-Level

Physical World

Cone
Response

Visual System

Opponent Encoding

Mental Models

Cognitive Models

Opponent Encoding

Opponent Encoding Theory

Idea: our perception of color is controlled by two types of opposing pairs:

- Red and Green
- Blue and Yellow

There is also a third pair, which is Black and White, used to describe lightness (not strictly a color opposition but rather the presence versus absence of light).

How Opponent Encoding Theory Works

1.Antagonistic Responses: Within this system, when one color of a pair is stimulated, the response to the other color is inhibited. For example, if the red-sensitive cells are stimulated, the response of the green-sensitive cells is suppressed, and vice versa. This means you cannot perceive both red and green at the exact same spot and time.

How Opponent Encoding Theory Works

1.Color Perception: This theory helps explain certain aspects of color vision, such as why there are no "reddish greens" or "bluish yellows." These combinations are forbidden because the channels that process these colors work against each other rather than together.

How Opponent Encoding Theory Works

1.Afterimages and Color Fatigue: Another phenomenon explained by this theory is the creation of afterimages. For example, if you stare at a red image for a while and then look at a white surface, you might see a green afterimage. This occurs because the red cells become "tired," and when you look away, the green cells (which were suppressed) now become more active, creating the perception of the opposite color.

CIE LAB Color Space

Axes correspond to opponent signals:

L* = luminance
$\mathrm{a}^{*}=$ red-green contrast
$b^{*}=$ yellow-blue contrast

CIE LAB Color Space

Axes correspond to opponent signals:

L* = luminance
$\mathrm{a}^{*}=$ red-green contrast $b^{*}=$ yellow-blue contrast

CIE LAB Color Space

More perceptually uniform than sRGB.

Scaling of axes such that distance in color space is proportional to perceptual distance.

A happier rainbow in LAB.

Modeling Color Perception

Low-Level
Abstraction
High-Level

Physical World

Cone
Response

Visual System

Opponent Encoding

Mental Models

Cognitive Models

Modeling Color Perception

Low-Level

Physical World

Visible Light

Visual System

Opponent
Encoding

Perceptual Models

Mental Models

Appearance
Models
"Teal"

Cognitive Models

Simultaneous Contrast

The inner and outer thin rings are, in fact, the same physical purple!

Simultaneous Contrast

Simultaneous Contrast

Bezold Effect

Color appearance depends on adjacent colors
E.g., adding a dark border around a color can the color appear darker.

Chromatic Adaptation

Our ability to adjust to color perception based on illumination

Chromatic Adaptation

Our ability to adjust to color perception based on illumination

Chromatic Adaptation

Our ability to adjust to color perception based on illumination

Quantitative Color Encoding

Sequential Color Scale

Ramp in luminance, possibly also hue.
Typically higher values map to darker colors.
Diverging Color Scale
Useful when data has a meaningful "midpoint."
Use neutral color (e.g., gray) for midpoint.
 Use saturated colors for endpoints. Limit number of steps in color to 3-9

Modeling Color Perception

Low-Level

Physical World

Visible Light

Visual System

Opponent
Encoding

Perceptual Models

Mental Models

Appearance
Models
"Teal"

Cognitive Models

Modeling Color Perception

Low-Level
High-Level

Physical World

Visual System
Mental Models

What color is this?

What color is this?

"Yellow"

What color is this?

What color is this?

"Blue"

What color is this?

 evolve color terms in similar ways?

Berlin \& Kay, Basic Color Terms. 1969.

Surveyed speakers from 20 languages.
Literature from 69 languages.
World Color Survey. 1976.
110 languages (including tribal),
25 speakers each.
Analysis published in 2009.

Color Naming

Is color naming universal? Do languages evolve color terms in similar ways?

Berlin \& Kay, Basic Color Terms. 1969.

Surveyed speakers from 20 languages.
Literature from 69 languages.
World Color Survey. 1976. 110 languages (including tribal), 25 speakers each. Analysis published in 2009.

Name 320 Munsell color chips. (Shares perceptual properties with CIE LAB,

Color Naming

Is color naming universal? Do languages evolve color terms in similar ways?

Berlin \& Kay, Basic Color Terms. 1969.

Surveyed speakers from 20 languages.
Literature from 69 languages.
World Color Survey. 1976. 110 languages (including tribal), 25 speakers each. Analysis published in 2009.

+10 achromatic chips

Color Naming
 Is color naming universal? Do languages evolve color terms in similar ways?

WCS stimulus array. For each basic color term (t) participants named, they were asked: 1. Mark all chips that you would call t.
2. Which chip is the best example(s) of t.

Color Naming
 Is color naming universal? Do languages evolve color terms in similar ways?

Language \#98 (Tlapaneco)
Mutual info $=0.942 /$ Contribution $=0.524$

Color Naming

Is color naming universal? Do languages evolve color terms in similar ways?

Winawer et al, 2007.
Russian makes obligatory

distinction between lighter blues
("goluboy") and darker blues
("siniy").
Russian speakers were faster at discriminating 2 colors if they fell into different categories (1 siniy, 1 goluboy) than if they were both from the same category (both

Color Naming Effects Perception

Color Naming Effects Perception

Minimize overlap and ambiguity of colors.
Select semantically resonant colors.

https://github.com/StanfordHCl/semantic-colors

Putting it together: Designing colormaps

Discrete (binary, categorical)

Continuous (sequential, diverging,
Gradien'، Legend

0	10	20	30	40	50	60	70	80	90	100

Discretized Continuous

Discrete Gradient

Categorical Color

Color Naming Effects Perception

Minimize overlap and ambiguity of colors.

Color Name Distance									Salience	Name	
0.001 .00	1.00	1.00	0.96	1.00	1.00	0.99	1.00	0.19	. 47	blue 65.3\%	
$1.00 \quad \mathbf{0 . 0 0}$	1.00	0.98	1.00	1.00	1.00	1.00	0.97	1.00	. 87	orange 92.2\%	(1)
1.001 .00	0.00	1.00	1.00	1.00	1.00	1.00	0.70	0.99	. 70	green 81.3\%	
1.000 .98	1.00	0.00	1.00	0.96	0.99	1.00	1.00	1.00	. 64	red 79.3\%	
0.961 .00	1.00	1.00	0.00	0.95	0.83	0.98	1.00	0.97	. 43	purple 52.5\%	0
1.001 .00	1.00	0.96	0.95	0.00	0.99	0.96	0.96	1.00	. 47	brown 60.5\%	
1.001 .00	1.00	0.99	0.83	0.99	0.00	1.00	1.00	1.00	. 47	pink 60.3\%	
0.991 .00	1.00	1.00	0.98	0.96	1.00	0.00	1.00	0.99	. 74	grey 83.7\%	(D)
1.000 .97	0.70	1.00	1.00	0.96	1.00	1.00	0.00	1.00	. 11	yellow 20.1\%	
0.191 .00	0.99	1.00	0.97	1.00	1.00	0.99	1.00	0.00	. 25	blue 27.2\%	
Tableau-10							verage	0.96	. 52		

http://vis.stanford.edu/color-names/analyzer/

Quantitative Color

Be Wary of Naive Rainbows!

Recommend using quantiles instead of even bins

ICD-9 Can sories 390-398
$402,404-42$)
402, 404-4

Quantitative Color Encoding

Sequential Color Scale

Ramp in luminance, possibly also hue.
Typically higher values map to darker colors.
Diverging Color Scale
Useful when data has a meaningful "midpoint."
Use neutral color (e.g., gray) for midpoint.
 Use saturated colors for endpoints. Limit number of steps in color to 3-9

Summary

Use only a few colors (~ 6 ideally).
Colors should be distinctive and named.
Strive for color harmony (natural colors?).
Use/respect cultural conventions; appreciate symbolism.
Get it right in black and white.
Respect the color blind.
Take advantage of perceptual color spaces.

