Color

DSC 106: Data Visualization Jared Wilber UC San Diego

Announcements

Project 2 Peer Review - Thursday 5/2. Lab 5 (D3) out, due 5/3. Project 3 out, due on Friday 5/10. I will email a group sign-up sheet for Project 3. for Non-Academic misconduct.

Be respectful on Ed - inflammatory messages will be sent to SAGE

Project 2 Peer Review

There is a spreadsheet assigning each students two peers. You will review Project 2 for the given peers.

Color

Low-Level

Abstraction

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

High-Level

Mental Models

COLOR APPEARANCE MODELS

Cognitive Models

Perceptual Models

Appearance Models

Low-Level

Abstraction

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

High-Level

Mental Models

Perceptual Models

Appearance Models

Cognitive Models

Visible Light

Light is an electromagnetic wave.

Wavelength (λ) between **370nm** – 730nm.

Color depends on the *spectral distribution function* (or *spectrum*): distribution of "relative luminance" at each wavelength.

Area under the spectrum is *intensity*: or how bright each wavelength is.

Visible Light

Light is an electromagnetic wave.

Wavelength (λ) between **370nm – 730nm**.

Color depends on the *spectral distribution function* (or *spectrum*): distribution of "relative luminance" at each wavelength.

Area under the spectrum is *intensity*: or how bright each wavelength is.

Additive: Perceived color is due to a combination of source lights (e.g., RGB).

Subtractive: Start from a white spotlight, and materials absorb specific λ s (e.g., RYB or CMYK).

Additive (digital displays)

Subtractive (print, e-paper)

Low-Level

Abstraction

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

High-Level

Mental Models

Perceptual Models

Appearance Models

Cognitive Models

Low-Level

Abstraction

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

High-Level

Mental Models

Perceptual Models

Appearance Models

Cognitive Models

Datina

Photoreceptors on retina are responsible for vision: **rods** – low-light levels, poor spatial acuity, little color vision

Photoreceptors on retina are responsible for vision: rods – low-light levels, poor spatial acuity, little color vision *cones* – sensitive to different wavelengths = color vision! short, middle, long ~ blue, green, red

Photoreceptors on retina are responsible for vision: rods - low-light levels, poor spatial acuity, little color *cones* – sensitive to different wavelengths = color short, middle, long ~ blue, green, red

[[]Maureen Stone. A Field Guide to Digital Color 20021

- The Retina *rode* low light laws! rods – low-light levels, poor spatial acuity, little color *cones* – sensitive to different wavelengths = color long, middle, short ~ red, green, blue
 - integrate against different input stimuli
 - tri-stimulus response color can be modeled
 - *metamers* spectra that stimulate the same LMS response are indistinguishable.

Green = 525nm Blue =444nm [Maureen Stone. A Field Guide to Digital

Color 2002

mathematic transformation No real lights can the x, y, z response curves.

CIE XYZ Color space standardized in 1931 to mathematically epresent tri-stimulus response curves.

CIE XYZ Color Spa

y

Project into a 2D plane to separate colorfulness from brightness.

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$
$$1 = x + y + z$$

CIE XYZ Color Spa

У

0

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$

$$1 = x + y + z$$

Spectral locus – set of pure colors (i.e., lasers of a single wavelength).

Slowly shifts from $S \rightarrow M$ $\rightarrow L$.

CIE XYZ Color Space

Display gamut = portion0.7of the color space that can0.6be reproduced by a0.5

- ^y0.4
- 0.3
- 0.2
- 0.1
 - 0

CIE XYZ Color Space

Display gamut = portion0.7of the color space that can0.6be reproduced by a0.5

- 0.4
- 0.3
- 0.2
- 0.1
- 0.0

Low-Level

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

Abstraction

High-Level

Mental Models

Perceptual Models

Appearance Models

Cognitive Models

Low-Level

Abstraction

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

High-Level

Mental Models

Cognitive Models

Perceptual Models

Appearance Models

Opponent Encoding

Opponent Encoding Theory

Idea: our perception of color is controlled by two types of opposing pairs:

- Red and Green
- Blue and Yellow

There is also a third pair, which is **Black and White**, used to describe lightness (not strictly a color opposition but rather the presence versus absence of light).

How Opponent Encoding Theory Works

green at the exact same spot and time.

1. Antagonistic Responses: Within this system, when one color of a pair is stimulated, the response to the other color is inhibited. For example, if the red-sensitive cells are stimulated, the response of the green-sensitive cells is suppressed, and vice versa. This means you cannot perceive both red and

How Opponent Encoding Theory Works

process these colors work against each other rather than together.

1. Color Perception: This theory helps explain certain aspects of color vision, such as why there are no "reddish greens" or "bluish yellows." These combinations are forbidden because the channels that

How Opponent Encoding Theory Works

opposite color.

1. Afterimages and Color Fatigue: Another phenomenon explained by this theory is the creation of afterimages. For example, if you stare at a red image for a while and then look at a white surface, you might see a green afterimage. This occurs because the red cells become "tired," and when you look away, the green cells (which were suppressed) now become more active, creating the perception of the

CIE LAB Color Space

Axes correspond to opponent signals:

- L* = luminance
- a* = red-green contrast
- b* = yellow-blue contrast

CIE LAB Color Space

Axes correspond to opponent signals:

- $L^* = luminance$
- a* = red-green contrast
- b* = yellow-blue contrast

[Maureen Stone. A Field Guide to Digital Color 20021

CIE LAB Color Space

More perceptually uniform than sRGB.

Scaling of axes such that distance in color space is proportional to perceptual distance.

The angry rainbow in **Better. But still be wary.**

A happier rainbow in LAB.

[Maureen Stone. A Field Guide to Digital

Low-Level

Abstraction

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

High-Level

Mental Models

Cognitive Models

Perceptual Models

Appearance Models

Low-Level

Abstraction

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

High-Level

Mental Models

COLOR APPEARANCE MODELS

Cognitive Models

Perceptual Models

Appearance Models

Simultaneous Contrast When two colors are side-by-side, they interact and affect our perception

The inner and outer thin rings are, in fact, the same physical purple!

When two colors are side-by-side, Simultaneous Contrast they interact and affect our perception

When two colors are side-by-side, Simultaneous Contrast they interact and affect our perception

Simultaneous Contrast when two colors are side-by-side, interact and affect our perception

Bezold Effect

Color appearance depends on adjacent colors

E.g., adding a dark border around a color can the color appear darker.

Chromatic Adaptation

Su Jason

Our ability to adjust to color perception based on illumination

Chromatic Adaptation Our ability to adjust to color perception based on illumination

Jason Su

Chromatic Adaptation Our ability to adjust to color perception based on illumination

Quantitative Color Encoding

Sequential Color Scale Ramp in luminance, possibly also hue. Typically higher values map to darker colors. **Diverging Color Scale** Useful when data has a meaningful "midpoint." Use neutral color (e.g., gray) for midpoint. Use saturated colors for endpoints. Limit number of steps in color to 3–9

COLORBREWER 2.0 color advice for cartography

Cynthia Brewer

https://colorbrewer2.org/

Modeling Color Perception

Low-Level

Abstraction

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

High-Level

Mental Models

COLOR APPEARANCE MODELS

Cognitive Models

Perceptual Models

Appearance Models

Modeling Color Perception

Low-Level

Abstraction

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

High-Level

Mental Models

Perceptual Models

Appearance Models

Cognitive Models

"Yellow"

"Blue"

Berlin & Kay, *Basic Color Terms*. 1969.

Surveyed speakers from 20 languages. Literature from 69 languages.

World Color Survey. 1976. 110 languages (including tribal), 25 speakers each. Analysis published in 2009.

Color Naming Is color naming universal? Do languages evolve color terms in similar ways?

Berlin & Kay, *Basic Color Terms*. 1969.

Surveyed speakers from 20 languages. Literature from 69 languages.

World Color Survey. 1976. 110 languages (including tribal), 25 speakers each. Analysis published in 2009.

Color Naming Is color naming universal? Do languages evolve color terms in similar ways?

Name 320 Munsell color chips. (Shares perceptual properties with CIE LAB, hut nradatae it)

Berlin & Kay, *Basic Color Terms*. 1969.

Surveyed speakers from 20 languages. Literature from 69 languages.

World Color Survey. 1976. 110 languages (including tribal), 25 speakers each. Analysis published in 2009.

Color Naming Is color naming universal? Do languages evolve color terms in similar ways?

+10 achromatic chips

Color Naming Is color naming universal? Do languages evolve color terms in similar ways?

WCS stimulus array. For each basic color term (t) participants named, they were asked: 1. Mark all chips that you would call t. 2. Which chip is the best example(s) of t.

Color Naming

Is color naming universal? Do languages evolve color terms in similar ways?

Language #72 (Mixteco) Mutual info = 0.942 / Contribution = 0.476

Language #98 (Tlapaneco) Mutual info = 0.942 / Contribution = 0.524

Mutual info = 0.939 / Contribution = 0.513 9.5 9.0 8.0 7.0 6 5.04.0 3.0 2.0 1.5 BAW 5R 5YR 5Y 5GY 5G 58G 5B 5PB 5P 5RP

Language #24 (Chavacano)

Winawer et al, 2007.

Russian makes obligatory distinction between lighter blues ("goluboy") and darker blues ("siniy").

Russian speakers were faster at discriminating 2 colors if they fell into different categories (1 siniy, 1 goluboy) than if they were both from the same category (both siniv or hoth a olubov

Color Naming Is color naming universal? Do languages evolve color terms in similar ways?

Color Naming Effects Perception

Green

Blue

Color Naming Effects Perception

Minimize overlap and ambiguity of colors. Select semantically resonant colors.

[Lin et al., EuroVis

Figure 6: Color assignments for categorical values in Experiment 1. (A = Algorithm, E = Expert)

https://github.com/StanfordHCI/semantic-colors

Putting it together: Designing colormaps

Discrete (binary, categorical)

Continuous (sequential, diverging,

-20

Gradien Legend												
0	10	20	30	40	50	60	70	80	90	100		

Discretized Continuous

Discrete Gradient

Categorical Color

Color Naming Effects Perception

Minimize overlap and ambiguity of colors.

Color Name Distance Salience										Name	
0.00	1.00	1.00	1.00	0.96	1.00	1.00	0.99	1.00	0.19	.47	blue 65.3%
1.00	0.00	1.00	0.98	1.00	1.00	1.00	1.00	0.97	1.00	.87	orange 92.2%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.70	0.99	.70	green 81.3%
1.00	0.98	1.00	0.00	1.00	0.96	0.99	1.00	1.00	1.00	.64	red 79.3%
0.96	1.00	1.00	1.00	0.00	0.95	0.83	0.98	1.00	0.97	.43	purple 52.5%
1.00	1.00	1.00	0.96	0.95	0.00	0.99	0.96	0.96	1.00	.47	brown 60.5%
1.00	1.00	1.00	0.99	0.83	0.99	0.00	1.00	1.00	1.00	.47	pink 60.3%
0.99	1.00	1.00	1.00	0.98	0.96	1.00	0.00	1.00	0.99	.74	grey 83.7%
1.00	0.97	0.70	1.00	1.00	0.96	1.00	1.00	0.00	1.00	.11	yellow 20.1%
0.19	1.00	0.99	1.00	0.97	1.00	1.00	0.99	1.00	0.00	.25	blue 27.2%
Tablea	au-10						Α	verage	<i>0.96</i>	.52	

http://vis.stanford.edu/color-names/analyzer/

and

Ston

Quantitative Color

Be Wary of Naive Rainbows!

- 1. Hues are not naturally ordered
- People segment colors into classes, perceptual banding
- Naive rainbows are unfriendly to color blind viewers
- Some colors are less effective at high spatial frequencies

8 Age-adjusted death rates by HSA, 1988-92

HEART DISEASE WHITE MALE

HEART DISEASE WHITE MALE

70

Quantitative Color Encoding

Sequential Color Scale Ramp in luminance, possibly also hue. Typically higher values map to darker colors. **Diverging Color Scale** Useful when data has a meaningful "midpoint." Use neutral color (e.g., gray) for midpoint. Use saturated colors for endpoints. Limit number of steps in color to 3–9

Use only a few colors (~6 ideally). Colors should be **distinctive** and **named**. Strive for color harmony (natural colors?). Use/respect cultural conventions; appreciate symbolism. Get it right in black and white. Respect the color blind. Take advantage of perceptual color spaces.

