Color **DSC 106: Data Visualization** Sam Lau UC San Diego

## Announcements

## Lab 3 due today Project 2 checkpoint due on Tuesday

#### FAQs:

When will Project 1 be graded? Aiming for Tuesday! 1.



## **Modeling Color Perception** Low-Level

#### Physical World

#### Visual System



Visible Light

Cone Response

#### Opponent Encoding

### High-Level

#### Mental Models

Perceptual Ap Models

Appearance Models Cognitive Models





## **Credit to Jamie Wong for many the images**



#### See his blog post for more details: https://jamie-wong.com/post/color/





# Modeling Color PerceptionLow-LevelAbstraction

#### Physical World

#### Visual System



Visible Light

Cone Response

#### Opponent Encoding

### High-Level

#### Mental Models

PerceptualAppearanceModelsModels

Cognitive Models







# Visible Light

Most colors are combinations of spectral (pure) colors







# Visible Light



Most colors are combinations of spectral (pure) colors

> Some wavelengths are reflected, others absorbed



# Visible Light



Most colors are combinations of spectral (pure) colors

# **Implication:** shine a bunch of lightblubs for each $\lambda$ = recreate this color







## Metamers









#### Emission spectrum of a pixel of a lemon on a screen









## Metamers

## Different spectra, but looks the same to our eyes!

#### This is called a metamer.

#### Why does this work?

Relative power

Relative power





#### Emission spectrum of a pixel of a lemon on a screen







# Modeling Color PerceptionLow-LevelAbstraction

#### Physical World

#### Visual System



Visible Light

Cone Response

#### Opponent Encoding

### High-Level

#### Mental Models

PerceptualAppearanceModelsModels

Cognitive Models



# Modeling Color PerceptionLow-LevelAbstraction

#### Physical World

#### Visual System



Visible Light

Cone Response

#### Opponent Encoding

### High-Level

#### Mental Models

PerceptualAppearanceModelsModels

Cognitive Models



## The Retina



Photoreceptors on retina: rods – low-light levels, little color vision **cones** – color vision! short, middle, long ~ blue, green, red









## The Retina





#### Firefox and Chrome have built in simulators



## Output = 0.16 red, 0.12 green, 0.02 blue





### Image of lemon on screen



citation



ccitation

# CIE XYZ (1931)

Take red, green, blue lamp, record RGB tuples (r, g, b).

Normalize values to be between 0 and 1.



## How to visualize all colors?



# **CIE XYZ (1931)**





## **CIE XYZ (1931)**

Project into a 2D plane to separate colorfulness from brightness.

0.4 –

y

0.2 -



0.8 -

xy chromaticity diagram





## **Our screens**



#### Not the same as the 1931 CIE light bulbs!



## **Color Gamuts**

Gamut = portion of color space that can be reproduced by display

0.4 –

y

0.8 -

0.2 -





Gamut = portion of color space that can be reproduced by display

CSS rgb() uses the sRGB gamut:

y

0.4 –

0.2 –

0.8 -





# Modeling Color PerceptionLow-LevelAbstraction

#### Physical World

#### Visual System



Visible Light

Cone Response

#### Opponent Encoding

### High-Level

#### Mental Models

PerceptualAppearanceModelsModels

Cognitive Models





# Modeling Color PerceptionLow-LevelAbstraction

#### Physical World

#### Visual System



Visible Light

Cone Response

#### Opponent Encoding

### High-Level

#### Mental Models

Perceptual Models

Appearance Models Cognitive Models













## **Opponent Encoding** Μ S b У g r yellow blue green red luminosity





# **CIE LAB Color Space**

Axes correspond to opponent signals:

- L\* = luminance
- a\* = red-green contrast
- b\* = yellow-blue contrast





# **OKLAB Color Space**

#### Oklab is modern version of CIELAB that we recommend

In CSS:

oklch(65% 50% 0)





# **OKLAB Color Space**

#### Rainbow in Oklab

## "Angry rainbow" in sRGB



## But still be wary!

JND issues Colorblind issues







# Modeling Color PerceptionLow-LevelAbstraction

#### Physical World

#### Visual System



Visible Light

Cone Response

#### Opponent Encoding

### High-Level

#### Mental Models

Perceptual Models

Appearance Models Cognitive Models





# Modeling Color Perception Low-Level Abstraction

#### Physical World

#### Visual System



Visible Light

Cone Response

#### Opponent Encoding

### High-Level

#### Mental Models

Perceptual Models

Appearance Models Cognitive Models







### The inner and outer thin rings are, in fact, the same physical purple!

[Donald Macleod]











Josef Albers











# Modeling Color Perception Low-Level Abstraction

#### Physical World

#### Visual System



Visible Light

Cone Response

#### Opponent Encoding

### High-Level

#### Mental Models

Perceptual Models

Appearance Models Cognitive Models





# Modeling Color Perception Low-Level Abstraction

#### Physical World

#### Visual System



Visible Light

Cone Response

#### Opponent Encoding

### High-Level

#### Mental Models

## PerceptualAppearanceModelsModels

#### Cognitive Models





## What color is this?



## What color is this?





## What color is this?





# Color Naming



#### Task: Mark all the chips you would label as "red", "green", etc.



# Color Naming

Language #72 (Mixteco) Mutual info = 0.942 / Contribution = 0.476



Language #98 (Tlapaneco) Mutual info = 0.942 / Contribution = 0.524





Language #19 (Camsa) Mutual info = 0.939 / Contribution = 0.487











## https://ismy.blue/



# **Color Naming Affects Perception**

#### Green



## Blue

- 1



# **Color Naming Affects Perception**

## Minimize overlap and ambiguity of colors

#### Color Name Distance

|                       |      |      | ~ ~ ~ ~ |      | 1.00 |      |      | 1.00 |      |
|-----------------------|------|------|---------|------|------|------|------|------|------|
| 0.00                  | 1.00 | 1.00 | 0.89    | 0.08 | 1.00 | 0.19 | 1.00 | 1.00 | 0.88 |
| 1.00                  | 0.00 | 0.99 | 1.00    | 1.00 | 0.81 | 1.00 | 0.78 | 1.00 | 0.99 |
| 1.00                  | 0.99 | 0.00 | 1.00    | 0.98 | 0.99 | 1.00 | 1.00 | 0.10 | 1.00 |
| 0.89                  | 1.00 | 1.00 | 0.00    | 0.92 | 1.00 | 0.80 | 0.84 | 1.00 | 0.31 |
| 0.08                  | 1.00 | 0.98 | 0.92    | 0.00 | 1.00 | 0.21 | 1.00 | 0.97 | 0.88 |
| 1.00                  | 0.81 | 0.99 | 1.00    | 1.00 | 0.00 | 1.00 | 0.92 | 1.00 | 1.00 |
| 0.19                  | 1.00 | 1.00 | 0.80    | 0.21 | 1.00 | 0.00 | 0.94 | 0.97 | 0.58 |
| 1.00                  | 0.78 | 1.00 | 0.84    | 1.00 | 0.92 | 0.94 | 0.00 | 0.99 | 0.76 |
| 1.00                  | 1.00 | 0.10 | 1.00    | 0.97 | 1.00 | 0.97 | 0.99 | 0.00 | 0.96 |
| 0.88                  | 0.99 | 1.00 | 0.31    | 0.88 | 1.00 | 0.58 | 0.76 | 0.96 | 0.00 |
| Excel-10 Average 0.86 |      |      |         |      |      |      |      |      |      |

### Default color palette for Excel: confusion!

#### Salience Name

| .44 |
|-----|
| .21 |
| .39 |
| .42 |
| .24 |
| .28 |
| .16 |

.10

.21

.25

.27

- blue 61.5%
- **red** 21.1%
- green 42.8%
- purple 57.8%
- blue 40.4%
- orange 36.3%
- blue 25.6%
- pink 21.8%
- green 30.8%
- purple 22.7%



# **Color Naming Affects Perception**

## Minimize overlap and ambiguity of colors

#### Color Name Distance

| 0.00 | 1.00 | 1.00 | 1.00 | 0.96 | 1.00 | 1.00 | 0.99 | 1.00 | 0.19 |
|------|------|------|------|------|------|------|------|------|------|
| 1.00 | 0.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 |
| 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.70 | 0.99 |
| 1.00 | 0.98 | 1.00 | 0.00 | 1.00 | 0.96 | 0.99 | 1.00 | 1.00 | 1.00 |
| 0.96 | 1.00 | 1.00 | 1.00 | 0.00 | 0.95 | 0.83 | 0.98 | 1.00 | 0.97 |
| 1.00 | 1.00 | 1.00 | 0.96 | 0.95 | 0.00 | 0.99 | 0.96 | 0.96 | 1.00 |
| 1.00 | 1.00 | 1.00 | 0.99 | 0.83 | 0.99 | 0.00 | 1.00 | 1.00 | 1.00 |
| 0.99 | 1.00 | 1.00 | 1.00 | 0.98 | 0.96 | 1.00 | 0.00 | 1.00 | 0.99 |
| 1.00 | 0.97 | 0.70 | 1.00 | 1.00 | 0.96 | 1.00 | 1.00 | 0.00 | 1.00 |
| 0.19 | 1.00 | 0.99 | 1.00 | 0.97 | 1.00 | 1.00 | 0.99 | 1.00 | 0.00 |

#### Tableau-10

## Default color palette for Tableau: better!

| Salience | Na |
|----------|----|
|----------|----|

.64

.43

| .47 |
|-----|
| 87  |
| .07 |
| .70 |

#### ame

- blue 65.3%
- orange 92.2%
- green 81.3%
- red 79.3%
- purple 52.5%
- **brown** 60.5% .47
- pink 60.3% .47
- grey 83.7% .74
  - yellow 20.1%

blue 27.2%

.52

.25

Average 0.96



# Putting it together: Designing colormaps





| 0 | 10 | 20 | 30 | 40 |  |
|---|----|----|----|----|--|





## Beware of naive rainbows!



- 1. Hues are not naturally ordered
- 2. People segment colors into classes, perceptual banding
- Naive rainbows are unfriendly to color blind viewers
- 4. Some colors are less effective at high spatial frequencies





## **Beware of naive rainbows!**

## 62%

#### Rainbow Palette



Borkin, Michelle, et al. "Evaluation of artery visualizations for heart disease diagnosis." 2011



S AGE-ADJUSTED DEATH RATES BY HSA, 1988-92



#### HEART DISEASE WHITE MALE



## https://colorbrewer2.org/

#### Age-adjusted

| (U.S. rate = 205.0) |                 |  |  |  |  |  |
|---------------------|-----------------|--|--|--|--|--|
| Rate per            | Comparative     |  |  |  |  |  |
| 100,000             | mortality ratio |  |  |  |  |  |
| population          | (HSA to U.S.)   |  |  |  |  |  |
| 253.8 - 328.6       | 1.24 - 1.60     |  |  |  |  |  |
| 236.8 - 253.7       | 1.16 - 1.24     |  |  |  |  |  |
| 215.2 - 236.7       | 1.05 - 1.16     |  |  |  |  |  |
| 199.9 - 215.1       | 0.98 - 1.05     |  |  |  |  |  |
| 179.5 - 199.8       | 0.88 - 0.98     |  |  |  |  |  |
| 166.7 - 179.4       | 0.81 - 0.88     |  |  |  |  |  |
| 112.4 - 166.6       | 0.55 - 0.81     |  |  |  |  |  |
|                     |                 |  |  |  |  |  |



32 AGE-ADJUSTED DEATH RATES BY HSA, 1988-92







## https://colorbrewer2.org/

#### Age-adjusted

| 10.0.14       | (0101 late = 20010) |  |  |  |  |  |  |  |
|---------------|---------------------|--|--|--|--|--|--|--|
| Rate per      | Comparative         |  |  |  |  |  |  |  |
| 100,000       | mortality ratio     |  |  |  |  |  |  |  |
| population    | (HSA to U.S.)       |  |  |  |  |  |  |  |
| 253.8 - 328.6 | 1.24 - 1.60         |  |  |  |  |  |  |  |
| 236.8 - 253.7 | 1.16 - 1.24         |  |  |  |  |  |  |  |
| 215.2 - 236.7 | 1.05 - 1.16         |  |  |  |  |  |  |  |
| 199.9 - 215.1 | 0.98 - 1.05         |  |  |  |  |  |  |  |
| 179.5 - 199.8 | 0.88 - 0.98         |  |  |  |  |  |  |  |
| 166.7 - 179.4 | 0.81 - 0.88         |  |  |  |  |  |  |  |
| 112.4 - 166.6 | 0.55 - 0.81         |  |  |  |  |  |  |  |



# **Quantitative Color Encoding**

**Sequential Color Scale** Ramp in luminance, possibly also hue. Typically higher values map to darker colors.

### **Diverging Color Scale** Useful when data has a meaningful "midpoint." Use neutral color (e.g., gray) for midpoint. Use saturated colors for endpoints.

## Limit number of steps in color to 3–7!







## **Use Perceptually Uniform Color Schemes!**

|             |                                                            | < >                             | 🔒 observa          | ablehq.com      | ڻ <b>بد</b> ھ |         | <u>с</u> ́т + |
|-------------|------------------------------------------------------------|---------------------------------|--------------------|-----------------|---------------|---------|---------------|
|             | • Platform ~                                               | Solutions ~                     | Resources ~        | Pricing         |               | Sign in | Sign up       |
|             | D3 > GALLERY<br><b>Color Scl</b><br><i>Including Every</i> | <b>hemes</b><br>ColorBrewer Sca | ıle                |                 | htt           | ps:/    | /ob           |
|             | Click any d3-scale                                         | -chromatic schem                | ne below to copy i | t to the clipbo | oard.         |         |               |
| *<br>•<br>• | Scheme size                                                | continuous                      | 0                  |                 |               |         |               |
| Ť           | Sequential                                                 | (Single-Hue                     | )                  |                 |               |         |               |
|             | Blues                                                      |                                 |                    |                 |               |         |               |
|             | Greens                                                     |                                 |                    |                 |               |         |               |
|             | Greys                                                      |                                 |                    |                 |               |         |               |
|             | Oranges                                                    |                                 |                    |                 |               |         |               |
|             | Purples                                                    |                                 |                    |                 |               |         |               |
|             | Reds                                                       |                                 |                    |                 |               |         |               |
|             | Sequential                                                 | (Multi-Hue)                     |                    |                 |               |         |               |
|             | BuGn                                                       |                                 |                    |                 |               |         |               |
|             | BuPu                                                       |                                 |                    |                 |               |         |               |
|             | GnBu                                                       |                                 |                    |                 |               |         |               |
|             | OrRd                                                       |                                 |                    |                 |               |         |               |
|             | PuBuGn                                                     |                                 |                    |                 |               |         |               |

## servablehq.com/@d3/color-schemes







## Takeaways

Use only a few colors (~5 ideally)

Colors should be distinctive and named.

Use/respect cultural conventions; appreciate symbolism.

Get it right in black and white.

Respect the color blind.

Take advantage of perceptual color spaces.





