#### Color

DSC 106: Data Visualization

Sam Lau

UC San Diego

#### Announcements

Lab 3 due today

Project 2 checkpoint due on Tuesday

#### FAQs:

1. When will Project 1 be graded? Aiming for today!

#### Project 2: Deceptive Visualization

Task: Create two static visualizations. One is **earnest**. One is **deceptive**.

Earnest = understandable, appropriate encodings, transparent

Deceptive = deliberately misleading, biased headings, not transparent.

Should be hard to tell which one is deceptive! Can't lie (e.g. change data values).

You will peer review 3 other students' submissions.

Encoding

Low-Level

Light

Response

High-Level



Models

Models

Models

#### Credit to Jamie Wong for many the images



See his blog post for more details: https://jamie-wong.com/post/color/

Low-Level

Abstraction



Electromagnetic wave: longer wavelength  $(\lambda)$  = less energy



Visible light is λ between 370nm – 730nm.

Most colors are combinations of spectral (pure) colors



Most colors are combinations of spectral (pure) colors

Light hits object

Some wavelengths are reflected, others absorbed

Eyes get reflected wavelengths Relative 400 700 500 600 Wavelength (nm)

Called a spectral distribution

Most colors are combinations of spectral (pure) colors

Implication: shine a bunch of lightblubs for each λ = recreate this color



#### Metamers



#### Metamers



Different spectra, but looks the same to our eyes!



This is called a *metamer*.

Why does this work?





Wavelength (nm)

Low-Level

Abstraction



Low-Level

Abstraction



#### The Retina



#### Photoreceptors on retina:

rods – low-light levels, little color visioncones – color vision!

short, middle, long ~ blue, green, red





#### The Retina

#### Firefox and Chrome have built in simulators



[Helaa Kolb Simple Anatomy of the



### Tri-Stimulus Response

Sunlight hits lemon



Light spectrum

Cone sensitivity

Cone response

Output = 0.16 red, 0.12 green, 0.02 blue Seem familiar?

#### Tri-Stimulus Response

Sunlight hits lemon



Image of lemon on screen



#### Tri-Stimulus Response

Sunlight hits lemon

Image of lemon on screen



# CIE XYZ (1931)

Take red, green, blue lamp, record RGB tuples (r, g, b).

Normalize values to be between 0 and 1.



$$(1, 1, 1) = white light$$

$$(1, 0, 0) = pure red$$

...etc.

How to visualize all colors?

# CIE XYZ (1931)



Project into a 2D plane to separate colorfulness from brightness.



#### Our screens



Not the same as the 1931 CIE light bulbs!

#### Color Gamuts

Gamut = portion of color space that can be reproduced by display



#### SRGB

Gamut = portion of color space that can be reproduced by display

CSS rgb() uses the sRGB gamut:



Low-Level

Abstraction



Low-Level

Abstraction







## Opponent Encoding





#### CIE LAB Color Space

Axes correspond to opponent signals:

L\* = luminance

a\* = red-green contrast

b\* = yellow-blue contrast



#### OKLAB Color Space

Oklab is modern version of CIELAB that we recommend

In CSS:

oklch(65% 50% 0)



# OKLAB Color Space

Rainbow in Oklab

"Angry rainbow" in sRGB

Notice that there aren't bright "bands": perceptually uniform

But still be wary!

JND issues Colorblind issues

Low-Level

Abstraction



Low-Level

Abstraction



#### Simultaneous Contrast

Two colors side-by-side interact and affect our perception



The inner and outer thin rings are, in fact, the same physical purple!

onald Macleod]

### Simultaneous Contrast

Two colors side-by-side interact and affect our perception



### Simultaneous Contrast

Two colors side-by-side interact and affect our perception



### Simultaneous Contrast

Two colors side-by-side interact and affect our perception



## Modeling Color Perception

Low-Level

Abstraction

High-Level



## Modeling Color Perception

Low-Level

Abstraction

High-Level



### What color is this?



### What color is this?



### What color is this?



tryclassbuzz.com: color

# Color Naming



Task: Mark all the chips you would label as "red", "green", etc.

### Color Naming





Language #98 (Tlapaneco) Mutual info = 0.942 / Contribution = 0.524



Language #19 (Camsa) Mutual info = 0.939 / Contribution = 0.487



Language #24 (Chavacano) Mutual info = 0.939 / Contribution = 0.513





https://ismy.blue/

# Color Naming Affects Perception



## Color Naming Affects Perception

Minimize overlap and ambiguity of colors



Default color palette for Excel: confusion!

# Color Naming Affects Perception

Minimize overlap and ambiguity of colors



Default color palette for Tableau: better!

# Putting it together: Designing colormaps

### Discrete (binary, categorical)

#### **Symbol Legend**



#### Continuous (sequential, diverging, cyclic)

#### **Gradient Legend**



#### Discretized Continuous

In general, prefer this over continuous!

#### **Discrete Gradient**



### Beware of naive rainbows!



### Beware of naive rainbows!



54





## Quantitative Color Encoding

#### Sequential Color Scale

Ramp in luminance, possibly also hue. Typically higher values map to darker colors.



#### **Diverging Color Scale**

Useful when data has a meaningful "midpoint." Use neutral color (e.g., gray) for midpoint. Use saturated colors for endpoints.



Limit number of steps in color to 3–7!

### Use Perceptually Uniform Color Schemes!



### Takeaways

Use only a few colors (~5 ideally)

Colors should be distinctive and named.

Use/respect cultural conventions; appreciate symbolism.

Get it right in black and white.

Respect the color blind.

Take advantage of perceptual color spaces.