Perception **DSC 106: Data Visualization** Sam Lau UC San Diego

Announcements

Lab 3 due Friday. Project 2 checkpoint due this coming Tuesday.

FAQs:

1. What if I want to customize my website for Lab 3 (and talking points in your video.

onwards)? Feel free, as long as you can include all required

Project 2: Persuasive Visualization

- Task: Create two static visualizations. One argues **for** a proposition. One argues **against**.
- Persuade your reader of your arguments using both earnest and deceptive techniques.
- Should be hard to tell when you're being deceptive! Can't lie (e.g. change data values).
- You will peer review 3 other students' submissions.

Data

Expressiveness

A set of facts is *expressible* in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

Visual

Effectiveness

A visualization is more *effective* than another if the information it conveys is more readily perceived than the information in the other visualization

Mackinlay, Jock. "Automating the design of graphical presentations of relational information." Acm Transactions On Graphics (Tog) 5.2 (1986): 110-141.

Tamara Munzner, Visualization Analysis and Design (2014).

Channels: Expressiveness Types and Effectiveness Ranks

(\rightarrow)

Graphical Perception The ability of viewers to interpret visual (graphical) encodings of information and thereby decode information in graphs.

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Discriminability: how easy is it to tell two things apart?

Which is brighter?

rgb(128, 128, 128)

tryclassbuzz.com: brighter1

Which is brighter?

tryclassbuzz.com: brighter2

Ernst Weber (1795 - 1878)German physician and a founder of experimental psychology.

Jnd is proportional to original intensity

Just Noticeable Difference (jnd)

Ratios more important than magnitude

Our brains treat continuous variations like discrete steps

Ernst Weber (1795 - 1878)German physician and a founder of experimental psychology.

Jnd for line width?

Jnd for circle sizes?

Eagle's Nest Tunnel

Kowloon

Scale

The thickness of each line reflects the average number of vehicles on that road per day in 2011

					_	_
2,000	5,000	10,000	20,000	50,000	100,000	150,000

Colour

Shows the percentage change compared to the previous year

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Discriminability: how easy is it to tell two things apart?

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Accuracy: how correctly can we read off values?

How much larger is the area of the big circle?

tryclassbuzz.com: circles

How much longer is the big bar?

tryclassbuzz.com: **bars**

How much larger is the area of the big circle?

How much longer is the big bar?

Graphical Perception Studies

Figure 4. Graphs from position–length experiment.

What proportion is the smaller marked section of the larger?

Cleveland, William S., and Robert McGill. "Graphical perception: Theory, experimentation, and application to the development of graphical methods." 1984

Figure 4. Graphs from position–length experiment.

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Accuracy: how correctly can we read off values?

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Pop Out: how easy is it to spot some values from the rest?

How many 3s?

[Based on a slide from John Stasko]

How many 3s?

[Based on a slide from John Stasko]

How fast does our visual system perceive differences?

Pre-Attentive: immediately recognize variation with little or no conscious effort (<200–250 ms).

Attentive: Takes some deliberate effort to perceive differences.

https://www.csc2.ncsu.edu/faculty/healey/PP/index.html

Color is pre-attentive

https://www.csc2.ncsu.edu/faculty/healey/PP/index.html

Shape too

But not a conjunction!

A *conjunction* is a combination of 2+ visual features.

Many spatial features are pre-attentive

Many spatial conjunctions are also pre-attentive

But most other conjunctions are **NOT** pre-attentive

A few more preattentive features:

line (blob) orientation Julész & Bergen 83; Sagi & Julész 85a, Wolfe et al. 92; Weigle et al. 2000

length, width Sagi & Julész 85b; Treisman & Gormican 88

closure Julész & Bergen 83

curvature Treisman & Gormican 88

density, contrast Healey & Enns 98; Healey & Enns 99

number, estimation Sagi & Julész 85b; Healey et al. 93; Trick & Pylyshyn 94

Takeaway: Use pre-attentive features when you want reader to notice a difference

intensity, binocular lustre Beck et al. 83; Treisman & Gormican 88; Wolfe & Franzel 88

intersection Julész & Bergen 83

terminators Julész & Bergen 83

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Pop Out: how easy is it to spot some values from the rest?

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Separability: how much interaction occurs between attributes?

One-dimensional: brightness Name the color

One-dimensional: shape Name the shape

Square Circle Circle

Square

Circle

Redundant: brightness and shape Name the shape

Name the color

White

Different information in 2+ visual channels

Black

White

Black

White

Conjunction principles

Redundancy Gain Improved performance when both dimensions provide the same information.

Filtering Interference Difficulty in ignoring one dimension while attending to another.

Conjunction principles

Separable = No infererence or gain

Conjunction principles

Separable = No infererence or gain

Example: Position and Hue

Separable: No interference or gain

Munzner, Tamara. Visualization analysis and design. CRC press, 2014.

Example: Width and Height

Separable: No interference or gain

Integral: Both interference and gain

Munzner, Tamara. Visualization analysis and design. CRC press, 2014.

Example: Thickness and color

Separable: No interference or gain

Integral: Both interference and gain

The thickness of each line reflects the average number of vehicles

https://multimedia.scmp.com/culture/article/SCMP-printed-graphics-memory/lonelyGraphics/201210A113.html

Example: Shape and Size?

Separable: No interference or gain

Integral: Both interference and gain

Configural: Only interference, no gain

FIGURE 3.40. The bivariate temperature-precipitation map of Figure 3.36, this time using point symbols that vary in shape and size to represent the two quantities.

[MacEachren 1995]

Separable: No interference or gain

Integral: Both interference and gain

Configural: Only interference, no gain

Separable: No interference or gain

Integral: Both interference and gain

Configural: Only interference, no gain

Separable: No interference or gain

Integral: Both interference and gain

Configural: Only interference, no gain

Separable: No interference or gain

Integral: Both interference and gain

Configural: Only interference, no gain

Asymmetric: One dimension separable but not the other

Separable: No interference or gain

Integral: Both interference and gain

Configural: Only interference, no gain

Asymmetric: One dimension separable but not the other

Takeaway: take care when combining visual features, and make use of redundant encodings!

Signal Detection

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Separability: how much interaction occurs between attributes?

Signal Detection

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Organization: how do we group visual elements?

- Figure / Ground
- Proximity
- Similarity
- Symmetry
- Connectedness
- Continuity
- Closure
- **Common Fate**

vis, not all of them

Will highlight most relevant ones for

- **Figure / Ground**
- Proximity
- Similarity
- Symmetry
- Connectedness
- Continuity
- Closure
- **Common Fate**

https://www.simonscarr.com/iraqs-bloody-toll

- Figure / Ground
- Proximity
- Similarity
- Symmetry
- Connectedness
- Continuity
- Closure
- Common Fate

Gestalt Principles Figure / Ground Proximity Similarity Symmetry Connectedness Continuity Closure Common Fate

https://www.livescience.com/45083-misteadingugumderatorychartukt/daniel/Modules/FM21820/visper07.html

METRICS HANNAH FAIRFIELD

CONOMISTS have long studied the and gasoline prices. Low gas prices

- Figure / Ground
- Proximity
- Similarity
- Symmetry
- Connectedness
- Continuity
- Closure Common Fate

We prefer smooth, not abrupt, changes.

Connections are clearer with smooth contours.

- Figure / Ground
- Proximity
- Similarity
- Symmetry
- Connectedness
- Continuity
- Closure
- Common Fate

a.

b.

*

Prefer field that shows smooth continuous contours

- Figure / Ground
- Proximity
- Similarity
- Symmetry
- Connectedness
- Continuity
- Closure
- **Common Fate**

$\bullet \bullet \bullet \bullet \bullet$

Dots moving together are grouped.

- Figure / Ground
- Proximity
- Similarity
- Symmetry
- Connectedness
- Continuity
- Closure
- **Common Fate**

http://hint.fm/wind/

Signal Detection

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Use 4-5 steps for most channels, hard for people to distinguish more

Even a direct map to e.g. area or brightness won't always work.

Use channels that are pre-attentive for callouts e.g. position, color.

...but be careful with combinations of channels!

Use these to improve annotations, coloring, animations.

